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Abstract 

Background Increasing agricultural productivity has long been touted as the main avenue to lifting the rural poor 
out of poverty and ensuring their sustainable development. The adoption of sustainable agricultural practices (SAPs) 
is vital for spurring agricultural productivity in a changing climate environment. This paper examines the factors 
(including long-term climate variability) influencing the adoption of multiple SAPs (improved seeds, organic and 
inorganic fertilizers, and legume intercropping) and their impact on crop productivity.

Methodology This study uses a nationally representative, geo-referenced plot-level data from a household survey in 
Nigeria. A multistage sampling technique was used to select households for the survey. The multivariate and ordered 
probit models were employed to estimate the adoption and intensity of adoption respectively, while the instrumental 
variables approach was used to examine the impact of the technologies on productivity.

Results The results provide evidence of interdependences between the SAPs, and that the factors that determine the 
initial adoption decisions are not necessarily the same factors that influence the intensity of use of the technologies. 
Climate risks in terms of high variability in temperature and rainfall affect SAPs adoption and their intensity of use. 
Access to agricultural extension, years of education and off-farm activities of the plot manager, and household wealth 
influence the use of improved seeds and inorganic fertilizer. Organic fertilizers are used mainly by households with 
large livestock units and those that live in areas with low soil nutrients and greenness index. In general, the intensity 
of SAPs adoption is influenced by wage and off-farm activities, and access to agricultural extension services. On the 
productivity side, inorganic fertilizer is positively correlated with plot-level productivity.

Conclusions These results have implications for rural development policies in Nigeria aimed at nudging farmers 
to adopt multiple technologies on their plots, while enhancing an outward shift of their crop production functions. 
Providing technical and financial resources to extension agents is crucial so they could better reach rural smallholder 
households with the knowledge and benefits of these SAPs. In addition, smallholder households should diversify their 
livelihood portfolios to include non-farm income generating activities. Agricultural Research and Development should 
target factors that respond to climate variabilities (such as drought resistant and early maturing varieties). There 
is a need for improved infrastructures (road networks to allow easy market access as well as access to credit) that 
will allow farmers to access these innovations.
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Introduction
Agriculture continues to be the main source of livelihood 
of the rural poor in Sub-Saharan Africa (SSA). Increas-
ing agricultural productivity has long been touted as the 
main avenue to lifting the rural poor out of poverty and 
ensuring their sustainable development. Agricultural 
production can be increased by either expanding the 
area under cultivation, changing cropping systems, and 
or use of sustainable productivity enhancing practices 
[41]. Over the years, however, the rise in agricultural pro-
duction in SSA has emanated mainly from expansion of 
area under cultivation, with less adoption of sustainable 
practices [20, 41]. Urbanization and increasing popula-
tion are, however, causing the conversion of historically 
agricultural lands into residential. Continuous cropping 
and land degradation have become rampant, leading to 
decreased soil fertility, and consequently, low yields and 
high food insecurity. Variations in climatic conditions—
rising temperatures, low and erratic rainfall—continue to 
pose threats to agriculture and food security, given that 
agriculture in the sub-region is mainly rainfed [21, 22].

Agriculture is the second largest share of the Nigerian 
economy, contributing an average of 24% to the coun-
try’s Gross Domestic Product (GDP) over the past decade 
[34]. The growth rate in agriculture decreased from 6.7% 
in 2012 to 2.13% in 2021. Despite this decline in growth, 
the sector remains the main source of food, employ-
ment, and other forms of livelihood of the rural poor. 
In 2017, the share of the working population engaged in 
agriculture was about 60% [35]. According to NBS [32], 
the share of poor people [those living below the national 
poverty line of 137,430 Naira (USD 382)1 in Nigeria stood 
at 40.1% in 2020; rural and urban poverty rates were 
52.1% and 18%, respectively. The COVID-19 pandemic 
has exacerbated the food insecurity situation in Nige-
ria, increasing the share of individuals that are severe 
food insecure from about 18% in 2019 to more than 30% 
in 2020 [17]. Thus, ending poverty and food insecurity 
among the rural poor in Nigeria requires targeting the 
agriculture sector, including increasing productivity, 
as well as enhancing access to input, output, and credit 
markets.

While the government has implemented number of 
policies aimed at boosting agricultural productivity and 
food security, rural smallholder households in Nige-
ria continue to face supply and demand side challenges: 

notably poor land tenure system, very low level of irri-
gation development, limited research on agricultural 
technologies, high cost of farm inputs, poor access to 
markets, and high postharvest losses and waste [16]. 
These are further compounded by the negative impacts 
of changing climate in terms of high temperatures and 
low and unpredictable rainfall patterns, given that the 
agriculture sector in Nigeria, like other SSA countries, is 
mainly rainfed. Increasing agricultural productivity and 
boosting food security, therefore, requires surmounting 
these challenges at the plot level, including the adoption 
of sustainable agricultural practices (SAPs) [49].

There are a number of theoretical and empirical studies 
on the adoption of SAPs [2, 10, 14, 17, 26, 37, 46]. There 
are equally a few recent studies in this area focusing spe-
cifically on Nigeria [3, 6, 28, 40] and others on agricul-
tural productivity [9, 38]. These studies either examine 
the determinants of adoption of agricultural technologies 
at the household level or productivity in isolation, with-
out delving into plot-level determinants, and productivity 
implications of adoption. In addition, to the best of my 
knowledge, there is no study examining the joint adop-
tion of SAPs at the plot level and their effect on produc-
tivity using nationally representative, geo-referenced data 
in rural Nigeria. Further, there is no study examining the 
impact of long-term climate variability on adoption of 
SAPs and productivity at the plot-level in rural Nigeria.

This paper contributes to the growing literature on 
agricultural technology adoption, climate change and 
productivity in the following respect. First, this study 
uses nationally representative, geo-referenced plot-
level data to rigorously examine the adoption of SAPs 
(improved seeds, organic fertilizer, inorganic fertilizer, 
and legume intercropping) at the plot-level in rural Nige-
ria. Second, this study contributes to the literature by 
examining the determinants of adoption and intensity 
of adoption of multiple SAPs at the plot-level, employ-
ing estimation strategies that allow for interrelationships 
between the SAPs and farmers choosing a mix of prac-
tices [4, 24, 49]. Third, this paper expands the literature 
on the impact of SAPs on households by examining the 
linkage between these technologies and crop productiv-
ity. Finally, this paper examines the impact of long-term 
climate variabilities on adoption and intensity thereof, 
and their implications for plot-level crop productivity.

The rest of the paper is structured as follows. In “Data 
and descriptive statistics” section, description of the 
data and summary statistics are presented. "Economet-
ric framework and estimation strategy" section provides 1 Using September 2019 exchange rate of 360 Naira to USD1.00 from www. 

oanda. com.

http://www.oanda.com
http://www.oanda.com
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the econometric strategy and estimation procedures 
employed in the study. "Results and discussion" section 
presents the empirical results, and in "Conclusions" sec-
tion conclusions and policy implications of the study are 
provided.

Data and descriptive statistics
Data
This paper uses data from the fourth wave of the Nige-
ria General Household Survey (GHS)—Panel, conducted 
by the National Bureau of Statistics (NBS), covering the 
2018/2019 agricultural season [33]. The GHS-Panel is 
part of the Living Standards Measurement Study—Inte-
grated Survey on Agriculture (LSMS-ISA) project of 
the World Bank. The LSMS team provided technical 
assistance, while the Bill and Melinda Gates foundation 
provided funding for the survey. The survey has rich 
information on agriculture, global positioning system 
(GPS), and other socioeconomic variables. The survey 
follows a two-stage cluster sampling procedure and is 
representative at the national and zonal levels, with rural/
urban stratification. Given its nationally representative 
design, the survey was fielded in all 37 states (including 
the Federal Capital Territory) of Nigeria. The present 
study focuses on the rural sector, where crop farming 
is the main income generating activity of smallholder 
households.

The GHS-Panel 2018/2019 data contain 5025 house-
holds, of which 4976 households were successfully 
interviewed with complete information. Of the 4976 
households, 3384 were located in rural areas, while the 
remaining 1592 were located in urban areas. Of the 3384 
rural households, 2704 engaged in crop farming and pro-
vided complete plot-level input and output information 
for the 2018/2019 agricultural season. Given that one of 
the main objectives of this paper is examining productiv-
ity, including incorporating climate and other biophysi-
cal variables (e.g., nutrient retention, rooting conditions, 
salinity, etc.), the sample was restricted further to only 
plots that were measured using GPS device, with availa-
ble coordinates. All plots cultivated and harvested by the 
household during the reference agriculture season and 
have GPS information were included in the analysis, irre-
spective of the crops planted on them. At the end of the 
cleaning process, 5616 plots from 2558 households were 
included in the analysis.

The GPS coordinates from the survey allow for link-
ing household- and plot-level data to geo-referenced soil 
and climate variables. The publicly available GHS-Panel 
2018/2019 data contain some relevant soil and weather 
variables. However, due to the requirements of the pre-
sent study, additional rainfall and temperature variables 
were generated. This was done by merging the household 

and plot-level GPS coordinates with the Africa Rainfall 
Climatology version 2 (ARC2) of the National Oceanic 
and Atmospheric Administration’s (NOAA) database.2 
Daily time series rainfall and temperature data were 
extracted for the period 1983–2017. Focusing on the 
planting season months (March–June), coefficient of 
variation of temperature, rainfall, and growing degree 
days (GDD) and average rainfall shortfall were generated 
and included as additional covariates in the adoption and 
intensity of adoption models. These variables also served 
as instruments in the production function analysis, 
allowing for examining the long-term impact of weather 
variability on agriculture technology adoption and pro-
ductivity in rural Nigeria. Following Asfaw et al. [4], the 
rainfall shortfall variable was computed as the average 
distance between the yearly precipitations and their long-
term mean. The computation of this variable does not 
include those years where the precipitation is higher than 
the long-term average to allow for examining long-term 
rainfall risk on adoption and productivity.

Description of variables and summary statistics
Dependent variables
The GHS-Panel 2018/2019 has rich plot-level informa-
tion on several SAPs. The SAPs considered in this study 
are improved seeds, inorganic fertilizer, organic fertilizer, 
and legume intercropping. Improved seeds include the 
use of modern, high yielding varieties recommended by 
the Federal Ministry of Agriculture and Rural Develop-
ment (FMARD), adapted to different agro-ecological 
zones of the country. Households were asked if the seed 
they planted on a given plot during the agricultural sea-
son was improved, as well as the name and certification 
status of the seed, if improved. Thus, a plot is defined as 
having been planted with improved seed if the household 
responded yes to the question of if the seed planted is 
improved. The descriptive result shows that about 9% of 
plots were planted with improved seeds (Table 1).

In Nigeria, inorganic fertilizer comes in the form of 
Nitrogen, Phosphorus, Potassium (NPK), and Urea. Fol-
lowing Refs. [4] and [49], adoption of inorganic fertilizer 
is defined as 1 if the household applied NPK and or urea 
on the plot during the agricultural season, and 0 other-
wise. Overall, households in rural Nigeria applied inor-
ganic fertilizer to 43% of their plots (Table  1). Organic 
fertilizer comes in the form of animal and plant wastes, 
commonly manure, and or crop residues. The share of 
plots in the study area that received organic fertilizer is 
29%. Legume intercropping involves planting a legume 

2 https:// catal og. data. gov/ datas et/ clima te- predi ction- center- cpc- africa- rainf 
all- clima tology- versi on-2- 0- arc2.

https://catalog.data.gov/dataset/climate-prediction-center-cpc-africa-rainfall-climatology-version-2-0-arc2
https://catalog.data.gov/dataset/climate-prediction-center-cpc-africa-rainfall-climatology-version-2-0-arc2
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(e.g., groundnut) and a non-leguminous crop  on the 
same plot during the agricultural season. Households in 
the survey were not asked explicitly if they used legume 
intercropping technology on respective plots but were 
asked for the crops they planted on a given plot dur-
ing the season. Using this information, a variable was 

constructed taking the value of 1 if the household inter-
cropped a legume crop with other crop(s) on the plot 
during the agricultural season, and 0 otherwise. The data 
show that about 24% of plots were intercropped with 
legumes.

Table 1 Definition of variables and summary statistics

Variable Definition Mean Std deviation

Improved seeds 1 if improved seed was planted on plot during the 2018/19 agricultural season 0.09 0.28

Inorganic fertilizer 1 if inorganic fertilizer was used on plot during the 2018/19 agricultural season 0.43 0.49

Organic fertilizer 1 if organic fertilizer was used on plot during the 2018/19 agricultural season 0.29 0.45

Legume intercropping 1 if the plot was intercropped with a leguminous crop during the 2018/19 agricultural season 0.24 0.43

Productivity Value of crop harvest per harvested plot area (Naira/hectare) 352,254 698,189

CV of rainfall Coefficient of variation of rainfall during the planting season (March-June), 1983–2017 0.69 0.18

CV temperature Coefficient of variation of daily temperature during the planting season (March-June), 1983–2017 0.05 0.02

Rainfall shortfall Average rainfall shortfall where the annual rainfall during the growing season (March-June) is less 
than their long-term average (1983–2017)

19.37 7.17

CV of GDD Coefficient of variation of growing degree days during the planting season (March-June), 1983–2017 0.22 0.21

CV days temp Coefficient of variation of number of days where temperature is greater than 34 °C during the plant-
ing season (March-June), 1983–2017

0.82 0.98

Household size Number of persons in the household 6.80 3.62

Dependency Share of dependents in the household 1.12 1.17

Gender 1 if the plot manager is male 0.84 0.37

Age Age of the plot manager in years 48.09 14.20

Education Number of years of formal education of the plot manager 6.12 4.79

Off farm 1 if the plot manger worked in a non-farm household business 0.45 0.50

Wage work 1 if the plot manger had a wage work 0.13 0.34

Credit 1 if the household had access to credit 0.12 0.32

Remittance 1 if the household received international remittance 0.02 0.13

Extension 1 if the household had access to extension services 0.20 0.40

Plot size Plot size planted (hectares) 0.52 0.78

Harvested plot size Plot size harvested (hectares) 0.50 0.77

Owned land 1 if the plot was owned by the household during the 2018/19 agricultural season 0.78 0.41

Erosion 1 if there is erosion control facility on plot 0.03 0.18

Steep slope 1 if farmer perceives the plot to have a steep slope 0.22 0.41

Irrigation 1 if the plot was irrigated during the 2018/2019 agricultural season 0.03 0.18

Fertilizer price Average price of a Kg of inorganic fertilizer (NPK or urea) 152.22 89.97

Distance Distance from homestead to nearest market (Km) 61.99 47.72

Nutrient constraint Nutrient availability constraint (1–5 scale, 5 = mainly water) 1.74 0.81

NDVI Long-term average NDVI (greenness) in primary growing season (highest quarter) 0.29 0.04

Distance to household Distance from homestead to plot (Km) 1.42 5.25

Wealth index Wealth index, including assets, dwelling characteristics, sanitation and water  − 0.43 0.73

Agric capital index Index of agricultural capital (implements) 0.66 1.05

TLU Tropical livestock size of the household 12 months prior to the survey 1.54 3.48

North Central 1 if the household is located in North Central zone 0.24 0.43

North East 1 if the household is located in North East zone 0.15 0.36

North West 1 if the household is located in North West zone 0.32 0.47

South East 1 if the household is located in South East zone 0.13 0.34

South South 1 if the household is located in South South zone 0.03 0.18

South West 1 if the household is located in South West zone 0.12 0.33
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In order to examine the impact of the SAPs on pro-
ductivity, the dependent variable is defined as the mon-
etary value of crop(s) per harvested plot area. For a given 
harvested plot, the survey asks for the value of crop har-
vested (excluding expected harvest). This value was then 
divided by the total hectares of harvested plot area and 
used as the measure of productivity of that plot. Produc-
tivity is measured in terms of value (Naira) per hectare 
instead of quantities (kilograms per hectare) because of 
the difficulty of aggregating different kinds of crops that 
may grow on the same plot and may have different pro-
ductivity levels and economic values [4, 9, 38, 39]. The 
descriptive results show that the average yield is 352,254 
Naira per hectare.3

Independent variables
Based on economic theory, the adoption and crop pro-
ductivity literature [12, 24, 25, 27, 30, 37], 38, 40, 43, 49] 
relevant explanatory variables were included in the adop-
tion and impact equations. The variables range from 
household-level demographic characteristics, credit and 
information access, land tenure, plot-level technical and 
managerial factors to climate- and soil-related variables. 
Table  1 provides the definitions of the right-hand side 
variables included in this analysis.

Econometric framework and estimation strategy
Conceptual framework
Rural smallholder households in Nigeria adopt a mixture 
of technologies on their plots, either simultaneously or 
sequentially. Applying multiple technologies on the same 
plot may result in complementarity or substitutability, 
where the adoption of one technology may increase the 
propensity to adopt another, and vice versa. With multi-
ple SAPs, there is possible interdependence between the 
unobserved heterogeneity, and thus, this interdepend-
ence should be taken into account when modeling house-
hold adoption decisions involving multiple alternatives. 
Further, in the presence of multiple technologies, adop-
tion becomes path dependent, where lessons learned 
from adopting the first technology might influence the 
adoption of subsequent ones.

Intensity of adoption is equally important when exam-
ining the adoption of multiple technologies at the plot 
level. This paper defines intensity of adoption as the 
number of technologies applied per plot in the grow-
ing season. Following Teklewold et  al. [49], intensity of 
adoption is also modeled using pooled random-effects 

ordered probit model, given that there are multiple plots 
per household in some cases.

Multivariate probit model
Following the extensive review of literature on adoption 
of SAPs [10, 13, 17, 18, 25, 36, 49, 50], this paper mod-
els the adoption of agricultural technologies at the plot 
level following the random utility framework. The deci-
sion to adopt a given technology is embedded in the 
general theory of random utility maximization. House-
holds adopt improved technology or switch from tradi-
tional to an improved practice if the utility derived from 
the improved type is higher than that of the traditional. 
When farmers are face with a single technology, their 
decision to adoption one is not conditional on adopting 
another. In the case of multiple technologies, however, 
the interrelations (substitutability and complementarity) 
between the technologies should be taken into account 
when modeling their adoption.

Let Uj denote the benefit that the ith household 
(i = 1, 2, . . . .N ) derives from using technology j 
(

j = S, F ,M, L
)

 on plot p (p = 1, 2, . . . .P) and U0 denote 
the benefit otherwise. Faced with j technologies, the 
ith household adopts the jth technology on plot p  if 
Uj > U0 . Define the unobserved net benefit of the ith 
household using technology j on plot p as Y ∗

ipj which is 
explained by observed household- and plot-level factors 
( X ′

ip ), climate variables (including long-term variability) 
(C

′

ip ), and error terms ( eip ) and specified as follows:

Such that the binary outcome for each technology is 
given as

The multivariate probit (MVP) model is thus character-
ized by a set of binary dependent variables equal to 1 if 
the household adopts technology j ( j = 1, 2, 3, 4) on plot 
p and 0 otherwise. The error terms in the MVP model 
follow a multivariate normal distribution given that 
households can adopt multiple technologies on the same 
plot. The multivariate normal distribution has a zero con-
ditional mean and variance normalized to unity to allow 
for identifying the parameters. The symmetric covariance 
matrix ( � ) of the error terms in the MVP model is given 
by

T ∗
ipj = X

′

ipβj + C
′

ipγj + eip.

Tipj =

{

1 ∀T ∗
ipj > 0

0 ∀T ∗
ipj ≤ 0

,
(

j = S, F ,M, L
)

� =







1 ρsf ρsm ρsl
ρfs 1 ρfm ρfl
ρms ρmf 1 ρml

ρls ρlf ρlm 1







3 This is equivalent to USD 2600 using 2019 Purchasing Power Parity of 
135.39.
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where the non-zero off-diagonal elements represent 
the unobserved correlation between the error terms of 
the underlying technologies. Given the heteroscedas-
tic nature of the error terms in the equations and the 
intra-household correlation of plot invariant covariates, 
the MVP model is estimated following Mundlak [31] 
approach by including intra-household means of plot-
varying variables, such as soil quality, irrigation, slope, 
among others, in the model. This allows for controlling 
for unobserved heterogeneity.

Ordered probit model specification
Given that the MVP technique described above is only 
able to identify the factors influencing the adoption of the 
SAPs, this paper goes a step further to estimate an ordered 
probit model to examine the extent to which households 
adopt the SAPs on their plots. Theoretically, the factors 
that affect the adoption of the practices may differ from the 
factors that determine the extent of application on plots. 
Generally, intensity of adoption has been measured using 
continuous variables (such as area planted to the technol-
ogy, or the quantity of an input applied to a particular area) 
[1, 44, 52]. In the case of multiple technologies applied to a 
specific plot, it is difficult to quantify the extent of adoption 
in the traditional sense given that some households may 
adopt the full package (all four technologies), while others 
may use part (less than 4 technologies) on their plots [49].

Following D’Souza et  al. [11], Wollni et  al. [51], and 
Teklewold et al. [49], the present study defines intensity 
of adoption as the number of the SAPs applied to a spe-
cific plot during the agricultural season. While there are 
alternative estimators that can be used to estimate the 
intensity of adoption [19], the current study employs the 
ordered probit model due to the path-dependent nature 
of using multiple technologies on plot during the growing 
season. Plot-level intensity of SAPs adoption is defined 
following a latent variable model:

where D∗
ip is a latent variable underlying the unobserved 

measure of the number of SAPs adopted on a given plot and 
X

′

ip and C ′

ip are as defined above. Given the axiom of path 
dependence, for a low D∗

ip, the number of SAPs is low, while 
the number of SAPs adopted increases as D∗

ip gets higher. 
Further, let α1 < α2 < α3 < α4 define unknown cut-off 
points or threshold parameters such that

D∗
ip = X

′

ipφ + C
′

ipµ+ vipvip|X
′

ip,C
′

ip ∼ Normal(0, 1)

Dip =























0 ∀D∗
ip ≤ α1

1 ∀α1 < D∗
ip ≤ α2

2 ∀α2 < D∗
ip ≤ α3

3 ∀α3 < D∗
ip ≤ α4

4 ∀D∗
ip > α4

.

This equation is estimated using the Maximum Likeli-
hood estimation procedure.

Estimating the impact on productivity
The paper further examines the impact of SAPs on crop 
productivity using the production function approach. 
Crop productivity is measured as the value of total har-
vests per area harvested of plot (Naira/hectare) [4, 5, 23]. 
The impact of the jth technology on plot-level productiv-
ity ( ψ ) is modeled by estimating the following equation:

where Qp is the logarithm of the value of output per hec-
tare from plot p , and T ′

ip is a vector of SAPs. It is obvious 
that T ′

ip is endogenous – differences in factors (household, 
plot, and climate) that affect the choice of technologies 
might also influence productivity (non-zero correlation 
between T ′

ip and εip ). Thus, the choice of technologies is 
endogenously, rather than exogenously, determined in 
the production function. This gives rise to multiple endo-
geneity problems given the number of SAPs. The implica-
tion is that estimating the equation without taking into 
account these endogeneity problems may lead to bias 
estimates and misleading conclusions.

This paper employed the instrumental variables (IV) 
procedure proposed by Lewbel [29] (ivreg2h program in 
Stata by Baum and Schaffer [7] in Stata) to correct for 
the endogeneity problems. The ivreg2h procedure works 
by using the model’s data (exogenous variables) to gen-
erate additional instruments to instrument the potential 
endogenous variables. These model generated instru-
ments are used alongside the externally supplied instru-
ments to allow for achieving identification and also 
correct for possible weak instruments.

Like in every IV technique, the choice of external 
instruments is critical for the ivreg2h procedure, as the 
consistency of the IV procedure lies in the validity of 
instruments. Theoretically, the choice of instruments 
should satisfy two conditions. First, the instruments 
should be correlated with the endogenous variables in 
the production model. Second, they should be uncor-
related with the unobserved variables (error term) that 
may affect productivity. Following economic theory and 
empirical literature [4, 9], long-term variability in climate 
during the planting season (March–June) over the period 
1983–2017 were used as instruments. Specifically, rainfall 
shortfall, coefficients of variation of growing degree days 
(GDD), rainfall, daily temperature, and number of days 
that the maximum temperature is greater than 34 degree 
Celsius were used as instruments. While at levels these 
climate variables might be correlated with productivity 
(e.g., high rainfall results in increased production, high 

Qp = T
′

ipψ + X
′

ipϕ + C
′

ip�+ εip,
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temperature results in low yields, etc.), using the long-
term variability in these covariates potentially generates 
uncertainty about productivity [4]. The validity of these 
instruments was tested, and the results are presented in 
subsequent sections.

Results and discussion
Joint, marginal, conditional, and unconditional adoption 
probabilities
Table  2 presents the joint and marginal probabilities of 
adoption of SAPs in rural Nigeria. This table shows that, 
among the SAPs under consideration, inorganic fertilizer 
is the most used SAP. Specifically, inorganic fertilizer is 
used as a single technology on about 18.56% of plots, 
followed by organic fertilizer (4.95%) and legume inter-
cropping (4.74%). Inorganic fertilizer was adopted jointly 
with improved seeds on 1.75% of plots and in combina-
tion with organic fertilizer, 8.5% of plots, and jointly with 
organic fertilizer and legume intercropping, 7.38% of 
plots. Improved seeds were used as a single technology 
on 3.64% of plots, in combination with organic fertilizer, 
0.76% of plots, while jointly with organic and inorganic 
fertilizer, 1.2% of plots.

In order to explore descriptively, the interdependence 
among SAPs adoption, the conditional and uncondi-
tional probabilities of adoption were estimated (Table 3). 
Unconditionally, 9% of plots received improved seeds, 
while inorganic fertilizer and legume intercropping 
were applied to 43% and 24% of plots, respectively. The 

adoption probability of inorganic fertilizers, however, 
decreases from 43 to 41% if the plot received organic fer-
tilizer, but increases to 74% if the plot received improved 
seeds and legume intercropping. The results show sub-
stitutability between organic and inorganic fertilizer 
adoption, as the probability of a plot receiving inorganic 
fertilizer decreases if the plot received organic fertilizer. 
Further, the adoption probability of improved seeds 
increases from 9 to 46% if the plot received inorganic fer-
tilizers, but reduces to 4% if the plot received organic fer-
tilizer and legume intercropping. This suggests that in the 
presence of multiple technologies, more needs to be done 
to nudge farmers to adopt improved seeds on their plots.

Determinants of plot‑level SAPs adoption: MVP results
The maximum likelihood estimates of the MVP model 
of the factors affecting the adoption of SAPs at the plot-
level in rural Nigeria are presented in Tables  4 and 5. 
The model fits the data reasonably well, as the Wald test 
(χ2(156) = 4083.32,P = 0.000) of the hypothesis that 
all regression coefficients in each equation are jointly 
equal to zero is rejected. Similarly, the likelihood ratio 
test of the hypothesis that the covariance of the  error 
terms across equations are not correlated is also rejected 
(χ2(6) = 51.58,P = 0.000) , warranting the MVP model 
instead of separate single-equation probit models.

The correlation matrix in Table  5 shows that the esti-
mated correlations between the SAPs is significantly dif-
ferent from zero, mostly showing positive relationships. 

Table 2 Joint and marginal probabilities of SAPs adoption (%)

Percent adopting in Joint probability Marginal probabilities

Improved 
Seeds

Inorganic 
fertilizer

Organic fertilizer Legume 
Intercropping

Improved seed only 3.64 3.64

Inorganic fertilizer only 18.56 18.56

Organic fertilizer only 4.95 4.95

Intercropping only 4.74 4.74

Improved seed and inorganic fertilizer 1.75 1.75 1.75

Improved seed and organic fertilizer 0.76 0.76 0.76

Improved seed and intercropping 0.20 0.20 0.20

Inorganic fertilizer and organic fertilizer 8.50 8.50 8.50

Inorganic fertilizer and intercropping 4.34 4.34 4.34

Organic fertilizer and intercropping 5.87 5.87 5.87

Improved seed, inorganic fertilizer, organic fertilizer 1.20 1.20 1.20 1.20

Improved seed, inorganic fertilizer, intercropping 0.65 0.65 0.65 0.65

Improved seed, organic fertilizer, intercropping 0.16 0.16 0.16 0.16

Inorganic fertilizer, organic fertilizer, intercropping 7.38 7.38 7.38 7.38

All four 0.39 0.39 0.39 0.39 0.39

None (plot did not receive any of the technologies) 36.91

Total 100.00 9.33 36.06 24.41 19.71
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These indicate that the probability of a plot receiving a 
particular technology is conditional on the propensity of 
that same plot receiving any other SAP, again support-
ing the use of MVP. The results further indicate that the 
use of inorganic fertilizer is complementary to the use of 
improved seeds, as is the use of organic fertilizer and leg-
ume intercropping.

The MVP model results vary substantially across the 
SAPs equations, indicating the heterogeneous nature of 
the results, and therefore warrant discussing the results 
separately. The results presented in Table  4 follows 
Mundlak’s [31] approach where means of plot-varying 
covariates were included in the MVP estimation to con-
trol for possible unobserved heterogeneity (correlation 
between unobservable plot-level invariant factors and 
the decision to adopt the technologies). The Wald test 
result (χ2(24) = 76.48,P = 0.000) indicates correlation 
between plot-varying covariates and the households’ 
decision to SAPs on plot.

The analysis reveals the importance of long-term cli-
mate variabilities on households’ decision to adopt the 
SAPs. Households located in areas with high long-term 
variability in rainfall are less likely to use improved 
seeds, but more likely to adopt organic fertilizers. Fur-
ther, in areas with high variability in daily temperatures, 
households are more likely to use organic and inorganic 
fertilizers to circumvent potential negative impact of 
temperatures during the growing season. Similarly, high 
variations in growing degree days (GDD) decrease the 
propensity of a plot receiving organic and inorganic fer-
tilizers. In addition, high long-term variations in the 

number of days that the average maximum temperatures 
are above 34 °C during the planting season (March–June) 
deters farmers from using organic fertilizers and legume 
intercropping, while at the same time spurring the use 
of improved seeds. Finally, rainfall shortfall during the 
planting season tends to discourage the use of improved 
seeds and legume intercropping.

The results demonstrate further the importance of 
household demographic characteristics on SAPs adop-
tion in rural Nigeria. The number of years of education 
of the plot manager has a positive significant effect on 
inorganic fertilizer and improved seeds adoption but no 
significant effect on the use of the other technologies. 
Male-managed plots are more likely to receive organic 
fertilizers compared to female-managed plots. The avail-
ability of road infrastructure, proxied by distance from 
the household’s dwelling to main market, negatively 
affect the use of most of the technologies. Specifically, 
households residing farther from the main markets are 
less likely to use inorganic fertilizers on their plot, which 
is expected given the probable high transaction cost of 
obtaining the inputs.

Households with access to extension services are more 
likely to adopt improved seeds and inorganic fertiliz-
ers, indicating the importance of agricultural extension 
services on SAPs adoption in rural Nigeria, corrobo-
rating the findings of Tambo and Abdoulaye [48]. The 
results also show the importance of household’s access 
to non-agricultural sources of income on adopting the 
underlying technologies. For instance, households who 
received international remittances are more likely to 

Table 3 Conditional and unconditional adoption probabilities of SAPs

Condition Improved Seeds Inorganic fertilizer Organic fertilizer Legume 
Intercropping

P(Yj = 1) 0.09 0.43 0.29 0.24

P
(

Yj = 1
∣

∣Ys = 1) 1 0.09 0.09 0.06

P
(

Yj = 1
∣

∣YF = 1) 0.46 1 0.60 0.54

P
(

Yj = 1
∣

∣YM = 1) 0.29 0.41 1 0.58

P
(

Yj = 1
∣

∣YL = 1) 0.16 0.30 0.47 1

P
(

Yj = 1
∣

∣Ys = 1, YF = 1) 1 1 0.40 0.26

P
(

Yj = 1
∣

∣Ys = 1, YM = 1) 1 0.63 1 0.22

P
(

Yj = 1
∣

∣Ys = 1, YL = 1) 1 0.74 0.39 1

P
(

Yj = 1
∣

∣YF = 1, YM = 1) 0.09 1 1 0.44

P
(

Yj = 1
∣

∣YF = 1, YL = 1) 0.08 1 0.61 1

P
(

Yj = 1
∣

∣YM = 1, YL = 1) 0.04 0.56 1 1

P
(

Yj = 1
∣

∣YS = 1, YF = 1, YM = 1) 1 1 1 0.24

P
(

Yj = 1
∣

∣YS = 1, YF = 1, YL = 1) 1 1 0.37 1

P
(

Yj = 1
∣

∣YS = 1, YM = 1, YL = 1) 1 0.70 1 1

P
(

Yj = 1
∣

∣YF = 1, YM = 1, YL = 1) 0.05 1.00 1 1
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adopt improved seeds than those otherwise. Similarly, 
plots where the manager is engaged in non-farm busi-
ness are more likely to received improved seeds, organic, 
and inorganic fertilizers. Wage-earning plot managers 
are more likely to apply improved seeds and inorganic 
fertilizers to their plots, but less likely to adopt organic 
fertilizers.

Plot size has a positive significant effect on organic 
and inorganic fertilizers adoption, as well as the pro-
pensity of a plot being intercropped with legumes. This 
result is consistent with the findings of Kassie et al. [23] 
for improved groundnut varieties adoption in Uganda. 
In addition, households tend to intercrop plots that 
they own with legumes, given that the full benefit of 

Table 4 Determinants of SAPs adoption—multivariate probit model

* , **, and *** indicate statistical significance at 10%, 5%, and 1%, respectively

Variable Improved seeds Inorganic fertilizer Organic fertilizer Legume intercropping

Coefficient Std dev Coefficient Std dev Coefficient Std dev Coefficient Std dev

Log (CV rainfall) − 0.732** 0.335 0.186 0.259 0.624** 0.311 − 0.388 0.333

Log (CV temperature) 0.355 0.228 1.423*** 0.158 0.742*** 0.199 − 0.324 0.198

Rainfall shortfall − 0.029*** 0.008 0.008 0.007 − 0.003 0.008 − 0.036*** 0.009

Log (CV of GDD) 0.004 0.082 − 0.469*** 0.061 − 0.198*** 0.064 0.014 0.066

Log (CV days temp) 0.352*** 0.063 − 0.089 0.057 − 0.516*** 0.067 − 0.430*** 0.068

Household size − 0.002 0.008 − 0.001 0.006 − 0.009 0.006 − 0.001 0.007

Dependency 0.036* 0.020 − 0.013 0.017 0.015 0.019 − 0.029 0.021

Gender − 0.116 0.071 0.061 0.058 0.189*** 0.068 − 0.250*** 0.074

Age − 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.002

Education 0.011* 0.006 0.015*** 0.005 − 0.008 0.005 − 0.005 0.005

Off farm 0.206*** 0.054 0.129*** 0.040 0.125*** 0.045 0.037 0.046

Wage work 0.247*** 0.077 0.112* 0.059 − 0.142* 0.075 0.152** 0.069

Credit − 0.141* 0.082 − 0.081 0.059 0.156** 0.063 0.042 0.072

Remittance 0.375** 0.151 − 0.092 0.154 − 0.075 0.175 − 0.071 0.209

Extension 0.201*** 0.064 0.165*** 0.048 − 0.065 0.054 − 0.062 0.055

Plot size 0.025 0.046 0.104*** 0.033 0.080** 0.039 0.312*** 0.038

Owned land 0.075 0.127 − 0.040 0.098 0.069 0.114 0.206* 0.114

Erosion − 0.058 0.324 − 0.091 0.233 − 0.029 0.287 − 0.104 0.260

Steep slope 0.093 0.122 − 0.020 0.082 − 0.039 0.093 − 0.092 0.089

Irrigation − 0.120 0.258 0.252 0.198 − 0.346 0.215 − 0.988*** 0.222

Fertilizer price 0.000 0.000 0.000 0.000 − 0.001** 0.000 − 0.000 0.000

Distance 0.002*** 0.001 − 0.003*** 0.000 − 0.003*** 0.000 − 0.000 0.000

Nutrient constraint 0.251*** 0.042 − 0.016 0.033 0.055 0.038 0.105** 0.042

NDVI 1.305* 0.671 − 6.233*** 0.675 − 3.188*** 0.745 − 2.425** 0.965

Distance to household 0.001 0.026 -0.007 0.013 − 0.013 0.016 − 0.024** 0.012

Wealth index 0.163*** 0.040 0.194*** 0.034 0.151*** 0.038 0.000 0.040

Agric capital index − 0.105*** 0.029 0.024 0.020 0.111*** 0.021 − 0.036 0.022

TLU 0.015** 0.006 0.010* 0.005 0.032*** 0.006 0.000 0.006

North Central − 0.114 0.236 0.645*** 0.227 − 0.068 0.303 0.861*** 0.324

North East 0.921*** 0.269 1.166*** 0.237 0.043 0.315 0.936*** 0.330

North West 1.120*** 0.290 1.479*** 0.248 0.391 0.322 1.034*** 0.341

South East − 0.022 0.226 1.085*** 0.234 0.881*** 0.284 0.385 0.349

South West 0.656*** 0.217 − 0.373 0.255 0.349 0.293 0.254 0.369

Constant − 1.351 0.823 3.667*** 0.600 1.106 0.748 − 1.514** 0.756

Joint significance of mean of plot-varying covariates [χ2 (24)] 76.48***

Sample size 5,616

Wald (156) 4083.32***
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leguminous crops (nitrogen fixing) might not be realized 
until subsequent agricultural seasons.

The long-term greenness of the location of the house-
hold, proxied by the normalized difference vegetation 
index (NDVI), decreases the probability of farmers apply-
ing organic and inorganic fertilizers to their plots. Agro-
nomically, the greenness of a vegetation denotes fertility, 
and therefore farmers may not be enthused about invest-
ing in soil enhancing technologies if the greenness index 
of the area is high. The nutrient availability constraints 
results show that households that face higher constraints 
in terms of nutrient availability are more likely to utilize 
improved seeds and legume intercropping.

The use of SAPs is also explained by household wealth 
and agricultural capital indices. Households with high 
wealth index use technologies that require initial capital 
investment, such as improved seeds, organic, and inor-
ganic fertilizers. This finding is consistent with Tekel-
wold et al. [49] and Asfaw et al. [4] that found wealth to 
positively explain household adoption of their underlying 
technologies. As expected, the use of organic fertilizer is 
positively explained by livestock ownership, consistent 
with Kassie et  al. [24] and Asfaw  et al. [4]. While agri-
cultural capital index has a negative effect on the use of 
improved seeds, it tends to facilitate the use of organic 
fertilizers.

Intensity of adoption—ordered probit model results
The ordered probit model results (both pooled and 
random effects) of the intensity of SAPs adoption are 
presented in Table  6. The estimation was done using 
Mundlak [31] approach by including mean of plot-var-
ying covariates in the model estimation.4 The approach 
allows for examining the marginal impact of each covari-
ate on the degree of adoption (number of technologies 

adopted per plot) separately. The Chi-squared statistic 
of the joint significance of all coefficients in the model 
rejects the null hypothesis at the 1% significance level 
(χ2(39) = 2546.51,P = 0.000) , indicating that the covari-
ates jointly explain the intensity of adoption of SAPs. 
Given the multiple plots per household, a random-effects 
ordered probit model was also estimated for robustness 
check (see the last two columns of Table 6).5

The results reveal the importance of climate variables 
on adoption intensity. Households located in areas with 
high long-term rainfall shortfall during the growing sea-
son are less likely to apply two technologies, but more 
likely to not use any technology. High variability in daily 
temperatures tend to foster adoption intensity. However, 
high variability in growing degree days and the number of 
days where the maximum temperature is above 34 degree 
Celsius during the growing season tend to decrease the 
intensity of use of the technologies on plot.

The results also show that involvement in non-farm 
activities increase the intensity of adoption of the tech-
nologies. Specifically, farmers who work in a non-farm 
business are about 6.8% more likely to adopt at least one 
technology and 1.2% more likely to adopt more than two 
technologies on their plot.6 Similarly, wage work also 
enhances the intensive use of the technologies; plots 
whose managers have wage income are about 3.8% more 
likely to receive at least one technology, compared with 
those whose managers have no wage income.

Road infrastructure, proxied by distance from house-
hold’s dwelling to main market, has a negative significant 
effect on the intensity of adoption. Households who are 
farther from the main market are about 0.01% less likely 
to adopt more than one technology and 0.1% more likely 
to not use any SAP. Similarly, distance from plot to home-
stead has negative significant effect on adoption intensity, 
corroborating Teklewold et al. [49] and Oyetunde-Usman 
[40] who found negative relationship between plot dis-
tance and intensity of adoption.

Another important geographic variable that has nega-
tive significant effect on the intensity of adoption is 
greenness index. Households located in areas with high 

Table 5 Estimated covariance matrix of the multivariate probit 
model regression between SAPs

*, ** and *** indicate statistical significance at 10%, 5% and 1%, respectively

S seed, F = inorganic fertilizer, M organic fertilizer, L legume intercropping

ρS ρF ρM ρL

ρS 1

ρF 0.071* 1

ρM 0.039 0.074*** 1

ρL − 0.026 − 0.009 0.192*** 1

Likelihood ratio test of:ρSF = ρSM = ρSL = ρFM = ρFL = ρML = 0

(χ2(6) = 51.58, P = 0.000)

4 The joint test of the mean of plot-varying covariates is significantly different 
from zero, implying a correlation between observed and unobserved hetero-
geneity, thus justifying the use of Mundlak’s procedure.

5 Likelihood ratio test was conducted to establish the plausibility of esti-
mating a random effects model, where the null hypothesis is that the cor-
relation between two successive errors terms of plots belonging to the 
same household is zero. The test rejects the null hypothesis at the 1% level 
(χ2(6) = 53.45, p = 0.00) , justifying the estimation of a random effects 
ordered probit model.
6 Note that for the ordered probit, the magnitudes were computed by 
summing up the marginal effects (ME) of the respective intensities. For 
instance, the probability of adopting only 1 practice = ME1; probability of 
adopting 2 practices = ME1 + ME2; probability of adopting more than 2 
practices = ME3 + ME4 + ME5; probability of adopting 2 or more prac-
tices = ME2 + ME3 + ME4 + ME5; and probability of not adopting any prac-
tice = ME0.
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Table 6 Determinants of intensity of adoption – ordered probit model

*, ** and *** indicate statistical significance at 10%, 5% and 1%, respectively

Variable Pooled ordered probit Random effects ordered 
probit

Coef Std error Marginal effects

Prob
(D = 0 | X)

Prob
(D = 1 | X)

Prob
(D = 2 | X)

Prob
(D = 3 | X)

Prob
(D = 4 | X)

Coef Std error

Log (CV rainfall) 0.260 0.222 − 0.097 0.021 0.059 0.017 0.0002 0.203 0.390

Log (CV temperature) 0.869*** 0.126 − 0.323*** 0.070*** 0.196*** 0.056*** 0.0007*** 1.075*** 0.222

Rainfall shortfall − 0.021*** 0.006 0.008*** − 0.002*** -0.005*** − 0.001*** 0.0000** − 0.018* 0.011

Log (CV GDD) − 0.256*** 0.049 0.095*** − 0.021*** − 0.058*** − 0.017*** − 0.0002*** − 0.371*** 0.089

Log (CV days temp) − 0.280*** 0.045 0.104*** − 0.022*** − 0.063*** − 0.018*** − 0.0002*** − 0.487*** 0.081

Household size − 0.005 0.005 0.002 0.000 − 0.001 0.000 0.0000 − 0.003 0.008

Dependency − 0.003 0.015 0.001 0.000 − 0.001 0.000 0.0000 0.001 0.028

Gender 0.033 0.047 − 0.012 0.003 0.007 0.002 0.0000 − 0.012 0.077

Age 0.002* 0.001 − 0.001* 0.000* 0.000* 0.000* 0.0000 0.003 0.002

Education 0.006 0.004 − 0.002 0.000 0.001 0.000 0.0000 0.011 0.007

Off farm 0.187*** 0.033 − 0.069*** 0.014*** 0.042*** 0.012*** 0.0002*** 0.256*** 0.062

Wage work 0.105** 0.050 − 0.038** 0.007*** 0.024** 0.007** 0.0001 0.187** 0.088

Credit − 0.021 0.047 0.008 − 0.002 − 0.005 − 0.001 0.0000 − 0.046 0.089

Remittance 0.081 0.124 − 0.030 0.005 0.019 0.006 0.0001 0.121 0.225

Extension 0.057 0.041 − 0.021 0.004 0.013 0.004 0.0001 0.101 0.074

Plot size 0.192*** 0.027 − 0.071*** 0.015*** 0.043*** 0.012*** 0.0002*** 0.276*** 0.031

Owned land 0.086 0.082 − 0.032 0.008 0.019 0.005 0.0001 0.127 0.082

Erosion − 0.083 0.192 0.031 − 0.008 − 0.018 − 0.005 − 0.0001 − 0.095 0.210

Steep slope − 0.021 0.066 0.008 − 0.002 − 0.005 − 0.001 0.0000 − 0.029 0.079

Irrigation − 0.392** 0.168 0.152** − 0.056* − 0.079*** − 0.018*** − 0.0002** − 0.539** 0.225

Fertilizer price 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000

Distance − 0.002*** 0.000 0.001*** 0.000*** 0.000*** 0.000*** 0.0000*** − 0.002*** 0.001

Nutrient constraint 0.128*** 0.028 − 0.048*** 0.010*** 0.029*** 0.008*** 0.0001*** 0.174*** 0.049

NDVI − 4.976*** 0.531 1.848*** − 0.399*** − 1.123*** − 0.322*** − 0.0043*** − 7.633*** 0.966

Distance to household − 0.014* 0.008 0.005** − 0.001* − 0.003* − 0.001* 0.0000 − 0.020* 0.013

Wealth index 0.183*** 0.028 − 0.068*** 0.015*** 0.041*** 0.012*** 0.0002*** 0.235*** 0.051

Agric capital index 0.024 0.016 − 0.009 0.002 0.005 0.002 0.0000 0.048 0.030

TLU 0.020*** 0.005 − 0.008*** 0.002*** 0.005*** 0.001*** 0.0000** 0.028*** 0.009

North Central 0.340** 0.159 − 0.121** 0.014*** 0.079** 0.027* 0.000 0.519** 0.251

North East 0.853*** 0.168 − 0.283*** 0.004 0.195*** 0.082*** 0.002* 1.274*** 0.272

North West 1.233*** 0.180 − 0.373*** − 0.046* 0.265*** 0.149*** 0.005** 1.752*** 0.297

South East 0.851*** 0.164 − 0.268*** − 0.024 0.195*** 0.094*** 0.002* 0.991*** 0.257

South West 0.499*** 0.168 0.001 0.118*** 0.047** 0.001 0.593** 0.265

Log likelihood − 5825.19 − 5479.23

Wald [χ2 (39)] 2546.51*** − 0.167*** 1130.60***

Joint significance of 
mean of plot-varying 
covariates [χ2 (6)]

53.45*** 53.74***

α1 − 3.14 0.481 − 3.756 0.840

α2 − 1.970 0.480 − 2.087 0.838

α3 − 0.863 0.479 − 0.541 0.839

α4 0.742 0.487 1.710 0.852
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long-term greenness index are less likely to adopt at 
least one technology. Households located in the north-
west part of the country are less likely to adopt at least 
one technology on their plots, while those located in 
the north central zone are more likely to do so. In fact, 
rural households from the north-east are about 27.9% 
more likely to adopt at least 2 technologies. Household 
wealth index and livestock size also positively influence 
the intensity of use of the technologies at the plot level.

Impact of technology adoption on productivity
In Table  7, the OLS and ivreg2h results of the impact 
of SAPs on crop productivity are presented. The OLS 
estimator provides the impact of the SAPs on crop pro-
ductivity, without considering potential endogeneity 
problems of the SAPs in the productivity model. The 
OLS estimator assumes that the use of these technolo-
gies is exogenously determined within the production 
function. Endogeneity, however, occurs when there is 
a non-zero correlation between the error term of the 
production function and other covariates. For instance, 
there might be unobserved variables that affect crop 
productivity and also determines the adoption of the 
technologies. The endogeneity test result suggests that 
the SAPs are endogenous in the production function.7 
Thus, using the results from the OLS to explain the 
impact of SAPs on crop productivity will be bias, result-
ing in misleading conclusion and recommendations. To 
surmount this, the ivreg2h technique is employed to 
correct for the shortcomings of the OLS.

The ivreg2h is a Stata program contributed by Baum 
and Schaffer [7]. The program allows for estimating 
instrumental variables regression with an option to gen-
erate instruments using Lewbel [29] method to control 
for potential endogeneity problems. This technique also 
allows for the identification of structural parameters 
in regression models with endogenous or mismeas-
ured regressors in the absence of traditional identifying 
information, such as external instruments or repeated 
measurements.

This approach of Lewbel’s allows for constructing 
instruments as simple functions of the model’s data 
(exogenous variables). For each regressor, ivreg2h creates 

standard form (centered) variables and used as instru-
ments. These standard, model generated instruments can 
either by themselves serve to instrument the endogenous 
variables or can be combined with the external instru-
ments (in this case the long-term climate variables pre-
sented earlier). Like other IV estimators, the validity of 
these instruments is verified in the ivreg2h by conduct-
ing three tests—underidentification, weakidentifica-
tion, and overidentification, presented at the bottom of 
Table 7. Further on, the discussion focuses on the results 
from the ivreg2h estimation procedure. While the test 
results confirm the validity of the chosen instruments, it 
is important to emphasize that no instrumental variable 
approach is perfect. Thus, while the results presented 
below are vital, they should be interpreted and applied 
with caution.

The results indicate that the adoption of improved 
seeds has no significant effect on plot-level productivity, 
though it has the expected sign. As expected, however, 
the use of inorganic fertilizers significantly increases crop 
productivity. The use of organic fertilizer, on the other 
hand, makes negative significant contribution to produc-
tivity. This can possibly be attributed to the fact that some 
organic fertilizers, especially crop residues and animal 
droppings, take longer to decompose and render their 
benefit within the short growing season, and the strong 
positive correlation between inorganic and organic ferti-
lizer discussed earlier under the conditional probabilities. 
This finding is also consistent with that of Asfaw et al. [4] 
who found negative correlation between crop residues 
and crop productivity in Niger. The adoption of legume-
cereal intercropping also shows no significant effect 
on crop productivity. One possible explanation for this 
result is that households might be planting several crops 
on the same plot, more than the soil fertility capacity of 
the plot can handle. Moreover, the benefit of adopting 
legume-cereal  intercropping technology may not accrue 
to the soil within the same growing season.

This paper looks further at how crop productiv-
ity is explained by household and plot-level factors. As 
expected, the results show that high greenness (NDVI) 
during the growing season increases agricultural produc-
tivity. Delay in the start of the wettest dekad is negatively 
correlated with productivity. We also see that the amount 
of rainfall during the growing season positively influ-
ences productivity. Soil characteristics of the plot, such 
as topography, nutrient availability, and water retentions, 
are critical in explaining plot productivity. The results 
show that plots with high nutrient availability constraints 
are less productive. Erosion is generally more prevalent 
on steep plots, potentially washing away the topsoil and 
rendering them less productive. As expected, irrigation 

7 The ivreg2h provides a C statistic that tests endogeneity of the included 
instruments. The C statistics is defined as the difference of the Sargan-Hansen 
statistic of the equation with the smaller set of instruments (valid under both 
the null and alternative hypotheses) and the equation with the full set of 
instruments, i.e., including the instruments whose validity is suspect. Under 
the null hypothesis that both the smaller set of instruments and the additional, 
suspect instruments are valid, the C statistic is distributed as chi-squared in 
the number of instruments tested. The C statistics (χ2

= 13.002p = 0.0234) 
rejects the null hypothesis, indicating that the technology variables are endog-
enous in the productivity model.
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and access to agricultural extension services positively 
impacts productivity.

Crop productivity from plots operated by older farm-
ers tend to be significantly higher than those managed 
by younger farmers. Moreover, plots operated by house-
holds with high dependency ratios are more produc-
tive, compared to those otherwise. As expected, crop 

productivity tends to increase with household wealth. 
Plot-level productivity also varies inversely with the size 
of livestock (TLU) owned by the household; households 
with large livestock sizes tend to be less productive. 
Large TLU might require households reallocating their 
resources from crop to livestock production, potentially 
leading to low crop output.

Table 7 Impact of SAPs on plot-level productivity (log value of harvest per hectare)

*, ** and *** indicate statistical significance at 10, 5 and 1%, respectively

Variable OLS IVREG2H

Coefficient Std error Coefficient Std error

Improved seeds 0.032 0.055 0.104 0.146

Inorganic fertilizer 0.324*** 0.034 0.305* 0.179

Organic fertilizer 0.019 0.040  − 0.427*** 0.140

Legume intercropping  − 0.092** 0.038 0.034 0.097

Growing season rainfall (mm) 0.000* 0.000 0.000 0.000

Start of wettest dekad in 2018  − 0.017** 0.008  − 0.019* 0.010

Household size 0.027 0.029 0.047 0.034

Dependency ratio 0.043*** 0.014 0.042*** 0.016

Gender  − 0.001 0.001  − 0.001 0.001

Age 0.156*** 0.051 0.161*** 0.056

Education  − 0.004 0.004  − 0.007* 0.005

Off farm  − 0.044 0.033  − 0.031 0.041

Wage work  − 0.104** 0.053  − 0.109* 0.063

Extension 0.093** 0.042 0.105** 0.048

Own plot 0.032 0.039 0.055 0.043

Erosion control  − 0.132 0.139  − 0.215 0.139

Steep slope  − 0.033 0.038  − 0.039 0.041

Irrigation 0.244*** 0.094 0.268*** 0.099

Distance to market 0.000 0.000  − 0.001 0.000

Nutrient constraint  − 0.148*** 0.025  − 0.134*** 0.028

NDVI in 2018 1.805*** 0.406 1.635*** 0.561

Distance to household 0.002 0.004 0.002 0.004

Wealth Index 0.078*** 0.030 0.093*** 0.036

Agric capital index 0.019 0.015 0.030 0.019

Tropical livestock unit  − 0.010*** 0.004  − 0.008 0.005

North Central 0.011 0.139  − 0.028 0.162

North East  − 0.398*** 0.140  − 0.409** 0.170

North West 0.040 0.144 0.156 0.195

South East 0.278* 0.156 0.268 0.183

South West 0.613*** 0.164 0.545*** 0.194

Constant 11.856*** 0.283 11.966*** 0.374

Sample size 5,616 5616

R2 0.070 0.050

Wald 15.8*** 10.54***

Underidentification test 136.19**

Weakidentification test 2.673***

Overidentification test (Hansen J statistic) 56.60
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Conclusions
Sustainable agricultural practices have long been hailed 
as positive production function shifters, and empiri-
cal evidence indicates that the adoption of these prac-
tices depends on a number of household characteristics, 
plot-level technical factors, as well as weather variables. 
This study aimed to unravel the factors that influence 
the adoption and intensity thereof of multiple SAPs, and 
their impact on crop productivity, using nationally repre-
sentative plot-level data from rural Nigeria. The multivar-
iate and ordered probit models were used to identify the 
determinants of adoption and intensity of use, respec-
tively. The impact of adoption on crop productivity was 
examined using the instrumental variables approach to 
control for endogeneity and achieve identification.

The results indicate that the application of organic and 
inorganic fertilizer to plots are negatively and positively 
correlated with crop productivity, respectively. This study 
also finds the importance of soil fertility and climate-
related variables on crop productivity. The results reveal 
complementarities and substitutabilities of SAPs use at 
the plot-level, implying that policies geared at promoting 
the adoption of the SAPs should take into account these 
interdependencies.

Despite these interdependencies, the factors that influ-
ence the adoption and intensity of use of the SAPs are 
heterogeneous: household demographic characteris-
tics, plot-level technical factors, and long-term climate 
variabilities. High long-term rainfall variability tends to 
discourage farmers from using organic fertilizers and 
improved seeds. Similarly, high variability in tempera-
tures tends to nudge farmers to use organic, inorganic, 
and legume intercropping, and their combinations on 
their plots. These underscore the importance of favorable 
long-term climatic conditions to households’ adoption 
decisions of SAPs.

Plots, whose managers had access to extension services, 
have spent more years in school, have off-farm income 
generating activities and live in households with high 
wealth index, are more likely to receive improved seeds 
and inorganic fertilizers. Similarly, the use of organic fer-
tilizer is stimulated by gender of the plot manager, long-
term greenness (negatively), distance to market, and 
wealth indices.

These results have implications for rural development 
policies in Nigeria aimed at nudging farmers to adopt 
multiple technologies, while enhancing an outward shift 
of their crop production functions. First, given the strong 
correlation between extension access and adoption of 
SAPs, it is important that agricultural extension service 
providers in rural Nigeria be well resourced technically 
and financially so they can reach smallholder households 
in rural areas with the knowledge and benefits of these 

practices. In addition, smallholder households should 
be encouraged to diversify their livelihood portfolios to 
include non-farm income generating activities. Further, 
given the strong relationship between long-term climate 
variabilities and SAPs adoption and productivity, it is 
important that agricultural Research and Development 
target factors that respond to climate variabilities (such as 
drought resistant and early maturing varieties). There is 
also a need for improved  infrastructures (road networks 
to allow easy market access as well as access to credit) to 
allow farmers access these innovations.

Finally, the adoption of improved agricultural practices 
has potential to impact household welfare beyond plot-
level productivity. Thus, future studies need to examine 
the welfare (food security, consumption, dietary diver-
sity) implications of adopting multiple agricultural tech-
nologies in rural Nigeria.
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